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In this article we deal with the variational approach to cactus trees (Husimi
trees) and the more common recursive approach, that are in principle equivalent
for finite systems. We discuss in detail the conditions under which the two
methods are equivalent also in the analysis of infinite (self-similar) cactus trees,
usually investigated to the purpose of approximating ordinary lattice systems.
Such issue is hardly ever considered in the literature. We show (on significant
test models) that the phase diagram and the thermodynamic quantities com-
puted by the variational method, when they deviates from the exact bulk prop-
erties of the cactus system, generally provide a better approximation to the
behavior of a corresponding ordinary system. Generalizing a property proved
by Kikuchi, we also show that the numerical algorithm usually employed to
perform the free energy minimization in the variational approach is always
convergent.

KEY WORDS: Cactus tree; Husimi tree; cactus approximation; lattice model;
Ising model.

1. INTRODUCTION

Cactus trees are lattices with a branched topology, (1, 2) and usually also a
self-similar structure. (1, 3) Model systems on cactus trees are interesting
mainly because of two reasons. First they often provide reliable approxi-
mations to more realistic models on ordinary lattices, (1, 4) and second their
statistical mechanics can be generally worked out exactly. (1–4) Because of
these facts, a lot of physical systems have been investigated in the frame-
work of tree lattices: a variety of Ising-like models, (5–11) Potts models, (12)



spin liquids, (13) systems with quenched disorder, (14) polymers, (15–19) abelian
sandpiles, (20) electrons in binary alloys (21) and amorphous solids. (22) The
simplest class of lattice models, i.e., Ising models, have been most widely
investigated also on cactus trees. In order to the approximation of systems
on ordinary lattices, it has been shown by Monroe that the cactus approx-
imation turns out to be particularly successful in two relevant cases, namely
systems with multi-site interactions (5, 6) and frustrated systems. (8) In both
cases the simple mean field theory and the Bethe approximation fail in
predicting a qualitatively correct phase diagram. (23, 24) In the special case of
the fully frustrated antiferromagnetic Ising model on the triangular lattice,
the same holds even for high order cluster variation method, (25) while the
cactus approximation yields qualitatively correct results. (8) Recently
Monroe himself has also shown that a series of cactus approximations with
larger and larger building blocks allows not only a more precise determi-
nation of phase diagrams (8) but also quite good estimates of critical expo-
nents. (26) As a consequence of such and other positive results, considerable
attention has been devoted to the properties of cactus trees (27) and of the
methods by which they are studied. (4)

In most papers dealing with cactus trees, calculations are based on the
self-similar structure of the system and this feature is exploited to deter-
mine its physical properties. In the following we shall refer to such kind of
treatments as to the recursive approach. Nevertheless it is known that
cactus trees can be studied also by means of a variational approach, equiva-
lent to the cluster variation method with a special choice of basic clusters. (2)

The two methods are in principle equivalent and both give the exact solu-
tion for finite cactus trees. Nevertheless, to the purpose of approximating
ordinary lattice systems, one is usually interested in the bulk properties of
an infinite cactus tree. This can be done exactly only by means of the
recursive approach, by evaluating the limit of a recursion relation, or more
precisely by investigating the attractor of a dynamical system defined by
the recursion relation itself. In order to employ the variational approach as
well, one usually assumes some degree of ‘‘translational’’ invariance. (1, 2)

Even when such assumption is actually verified in the interior (bulk) of the
cactus tree, the variational free energy density evaluated in this way turns
out to be only the bulk contribution, not the exact one. The contribution
of surface sites, whose number increases exponentially as the tree is
expanded, (1) cannot be neglected even in the thermodynamic limit. This has
not always been stated so clearly in the literature, (2) and one might expect
that a minimization of the bulk free energy density always yields bulk
equilibrium properties.

We point out that this is true only under certain conditions, namely
when a limit of the recursion relation exists (that is the associated dynamical
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system has a fixed point, that is the bulk invariance condition actually
holds (1)), and as far as the equation of state is concerned. The latter issue
refers to the possibility of multiple stable fixed points, which is related to
coexistence phenomena. In this case the two methods generally predict the
same solutions but which one is the real attractor of the recursive method
depends on boundary conditions. Different criteria have been proposed for
the determination, in the presence of multiple fixed points, of the first order
transition which best approximates that of an ordinary lattice system,
independently of boundary conditions. One, proposed by Gujrati, (4) is based
on the bulk free energy density. Another one, proposed by Monroe, (28) is
based on the evaluation of the derivatives of the recursion relation at the
fixed points. We show analytically that Gujrati’s free energy criterion is
equivalent to the variational method. By means of actual calculations per-
formed on significant test models we also show numerical evidence that
Monroe’s criterion may be equivalent as well. When a fixed point does not
exist, the presence of boundaries may dramatically affect the bulk behavior
of the cactus system, which may be completely different from that predicted
by the variational approach. In this case both Gujrati’s and Monroe’s cri-
teria do not work, but the variational approach seems to provide quite a
good approximation to the phase behavior of the corresponding ordinary
lattice system, even if it generally does not coincide with the exact bulk
behavior of the cactus system. In the last part of the paper we relate such a
nice behavior of the variational method, observed for particular cases, to a
general property of the algorithm used to perform the free energy mini-
mization, that is the natural iteration method. (29) It turns out that the free
energy decreases at each step, which implies that, contrary to the recursive
approach, the variational approach has always a ‘‘fixed point.’’ We actually
generalize a proof given by Kikuchi (29) for the Bethe approximation, coin-
ciding with the variational approach to the Cayley tree. (30)

The paper is organized as follows. In Section 2 we introduce the sta-
tistical mechanics of cactus trees: the variational approach and the recur-
sive approach. As previously mentioned, we show that, as far as equations
of state are concerned, the recursive approach reduces to the variational
approach, provided a limit of the recursion relation exists. Moreover we
give the analytic proof that, in the same hypothesis, the variational
approach is equivalent to Gujrati’s criterion for the location of first order
transitions. In Section 3 we work out variational calculations for three test
models already investigated by the recursive approach, namely the Ising
model with pure 4-spin interaction on the square cactus, (5) the antiferro-
magnetic Ising model on the triangle cactus, (8) and the Ising model with
pure 3-spin interaction on the triangle cactus. (5) In the first case the recur-
sive method has always a fixed point. In the second case it shows limit
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cycles of period two, and in the third case also higher period limit cycles
and chaotic behavior. In Section 4 we prove the property of free energy
decreasing and discuss some consequences of such property, concerning
results of the previous section. In Section 5 we give some concluding
remarks.

2. STATISTICAL MECHANICS ON CACTUS TREES

Let us first introduce a recipe to build up a cactus tree. Let us consider
a cluster of sites, which may be a triangle of 3 sites, as in Fig. 1(a), or more
generally a cluster of n sites. Let each site be characterized by a state vari-
able, which for simplicity is assumed to be a scalar. Let us also assume that
a cluster hamiltonian h defines interactions among sites in the cluster.
Defining a connectivity constant c, we build a branch of the cactus tree by
a ‘‘growth’’ procedure. We attach c − 1 equivalent clusters to the i-th site of
the starting cluster, for i=2,..., n (Fig. 1(b)), and then we produce new
generations by iterating the procedure (Fig. 1(c)). Finally we attach c
equivalent branches to the base site. Such a system turns out to be self-
similar in the infinite generation (thermodynamic) limit.

According to Morita, (2) clusters used as building blocks are denoted as
main clusters, while intersections of main clusters are denoted as joint sites.
In the above example all sites in the internal clusters are joint sites, but this
is not necessarily the case. The total hamiltonian H can be written as a sum
over all the main clusters

H(X)=C
M

h(xM), (1)

where xM denotes the set of site state variables in the main cluster M, and
X denotes the state of the whole system. We also have to introduce the
partial partition functions, which play an important role in the statistical
mechanics of cactus trees. Let us consider a branch, whose base site is J
and whose first main cluster is M, and a partial hamiltonian obtained by
summing over main clusters of the branch. The partial partition function
WJM(xJ) of the branch is obtained by summing the Boltzmann weights of
the partial hamiltonian over the possible states of the branch minus the
base site J. Making use of the partial partition functions, it is possible to
write the probability distribution pJ(xJ) of the state xJ of any joint site J as
follows

pJ(xJ)=Z−1 D
M ‡ J

WJM(xJ), (2)

where Z=;X e−bH(X) is the total partition function, the product runs over
main clusters M containing J, and b — 1/kBT (being kB the Boltzmann
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Fig. 1. An example of cactus tree obtained by a growth procedure: (a) first generation
branch; (b) second generation branch; (c) third generation branch. Numerals are meant to
show that cluster hamiltonians may remove the dihedral symmetry of triangles used to repre-
sent clusters.

constant and T the absolute temperature). Moreover, as far as the proba-
bility distribution pM(xM) of the state xM of a main cluster M is concerned,
it is easy to show that

pM(xM)=Z−1e−bh(xM) D
J … M

D
MŒ ‡ J
MŒ ] M

WJMŒ(xJ), (3)
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where the outer product runs over all joint sites J contained in M, and the
inner one over all main clusters MŒ containing J, except M itself. Perform-
ing some manipulations, Eqs. (2) and (3) allow to verify that the probabil-
ity distribution of the whole system P(X)=Z−1e−bH(X) takes on the fac-
torized form

P(X)=D
M

3pM(xM) D
J … M

[pJ(xJ)]−c − 1
c 4 . (4)

The latter is a peculiar property of cactus trees, which can be exploited to
work out their statistical mechanics. By now let us only notice that, in
order to prove Eq. (4), it is important to take into account the identity

C
M

11 − C
J … M

c − 1
c

2=1, (5)

where the outer sum runs over all main clusters M and the inner one over
the joint sites J in M. Such ‘‘sum rule’’ can be easily proved by considering
the growth procedure described above, where each joint site implies the
addition of c − 1 main clusters. Splitting each contribution from a joint site
among main clusters that contain it, one obtains Eq. (5).

2.1. The Variational Approach

We can now write the total free energy as a function of probability
distributions of main clusters and joint sites only. As far as the entropy S is
concerned, Eq. (4) allows to write

S/kB=−Olog P(X)P=−C
M

7 log pM(xM) − C
J … M

c − 1
c

log pJ(xJ)8 , (6)

where O ·P denotes an ensemble average. For the internal energy U, from
Eq. (1) we simply have

U=OH(X)P=C
M

Oh(xM)P. (7)

Expanding ensemble averages, we can express the free energy F by

bF=bU − S/kB=C
M

C
xM

pM(xM) jM(xM), (8)
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where

jM(xM) — bh(xM)+log pM(xM) − C
J … M

(1 − 1/c) log pJ(xJ). (9)

This expression for the free energy, which is exact, coincides with that of
the cluster variation method (31) if main clusters are chosen as maximal
clusters. If probability distributions are assumed as variational parameters,
the exact thermodynamic equilibrium state can be determined by the
minimization of this free energy with suitable compatibility constraints.
Namely one has to impose that joint site probability distributions pJ(xJ)
are marginal distributions of main cluster distributions pM(xM) for all
M ‡ J

pJ(xJ)= C
xM0J

pM(xM), (10)

where xM0J denotes the state of the main cluster M minus the joint site J.
In the limit of an infinite cactus tree, which is relevant to the approx-

imation of ordinary (translationally invariant) lattices, it is not possible to
employ the variational approach as previously described, because one
would have to deal with an infinity of variational parameters. Therefore
one assumes an invariance condition

pM(x) — p(x) (11)

for main clusters M in the interior (bulk) of the tree, that is far from the
surface. From now on

x — {x0, x1,..., xn} (12)

denotes the total state of a bulk main cluster: joint site states are denoted
by xi, for i=1,..., n, while x0 denotes the state of sites that are not joint
sites. In the hypothesis that Eq. (11) holds, in the bulk we shall have only a
number n of (in principle) different ‘‘types’’ of joint sites, i.e., n different
joint site probability distributions pi(xi), for i=1,..., n. For convenience
we denote the state of a bulk main cluster minus the i-th joint site as

x0 i — {x0, x1,..., xi − 1, xi+1,..., xn}. (13)

Accordingly, joint site distributions can be written as marginal distribu-
tions by

pi(xi) — C
x0 i

p(x). (14)
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As mentioned in the introduction, the variational approach as employed in
practice evaluates only the bulk free energy density f (per main cluster)
and performs a minimization of f. In this way it may deviate from the
exact bulk behavior of the cactus system, but, being independent of
boundary conditions, it is expected to approximate that of a corresponding
ordinary lattice model. Taking into account Eqs. (8), (9), and the
invariance assumption Eq. (11), we can write

bf=C
x

p(x) j(x), (15)

where

j(x) — bh(x)+log p(x) − C
i

(1 − 1/c) log pi(xi), (16)

and the sum runs over i=1,..., n. The free energy density f is a functional
in p(x) only, being pi(xi) dependent on them via Eq. (14). We work out the
minimization with respect to p(x), using the Lagrange multiplier method to
impose the normalization of p(x). Accordingly, we define the functional

bfl=bf − l 5C
x

p(x) − 16 , (17)

where l is the unknown Lagrange multiplier. Taking the derivatives of fl

with respect to p(x) and setting them to zero, we obtain

p(x)=q−1e−bh(x) D
i

[pi(xi)]1 − 1/c, (18)

where q is related to l in an irrelevant way. We take the sum of both sides
of Eq. (18) over all the main cluster states x, and impose the normalization,
obtaining

q=C
x

e−bh(x) D
i

[pi(xi)]1 − 1/c. (19)

Eq. (18), with q defined by Eq. (19), provides a fixed point equation for
p(x), which is usually solved via an iterative procedure known as natural
iteration method (NIM). (29) Different solutions may be found starting the
procedure from different guess values p(x), and the stable phase is deter-
mined as the solution with the lowest free energy density f. The latter can
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be evaluated by taking the logarithm of both sides of Eq. (18), substituting
into Eq. (16) and then into Eq. (15), yielding

bf=−log q, (20)

where q has to be computed at each iteration. In the following we shall
verify that such a criterion of stability generally does not predict the actual
first order phase transitions for a cactus system in the thermodynamic
limit, because it does not take into account surface contributions to the free
energy. Nevertheless it seems to be the most reasonable way to approxi-
mate the phase behavior of a corresponding ordinary system. (2, 4)

2.2. The Recursive Approach

The recursive approach is based on a simple relationship between the
partial partition function of a branch and those of its sub-branches. Sub-
stituting Eqs. (2) and (3) into Eq. (10), one can write

WJM(xJ)= C
xM0J

e−bh(xM) D
JŒ … M
JŒ ] J

D
MŒ ‡ JŒ

MŒ ] M

WJŒMŒ(xJŒ), (21)

where the outer product runs over all joint sites JŒ contained in M except
J, and the inner one over all main clusters MŒ containing JŒ, except M
itself. By means of this equation (in a recursive manner, starting from the
boundaries) it is possible to determine partial partition functions WJM(xJ)
for all branches departing from each joint site J of a finite cactus tree.
Then Eqs. (2) and (3) provide respectively joint site and main cluster
probability distributions, from which all equilibrium thermodynamic
properties can be derived.

Let us now turn to the infinite cactus tree and to the evaluation of its
bulk properties. In the framework of the recursive approach one can
compute the i-th (bulk) joint site probability distribution pi(xi) by (i) con-
necting c k-th generation branches of the i-th type, (ii) evaluating the
central site distribution pi, k(xi), and (iii) investigating the asymptotic
behavior for k Q .. The existence of a limit is equivalent to the bulk
invariance condition Eq. (11). Let us notice that actually one considers the
central site of n (in principle) different trees of increasing dimensions. This
does not evaluate correctly the properties of sites close to the surface of the
real tree, but should become exact for bulk sites. Let us denote the partial
partition function of a k-th generation branch attached to an i-th type site
as Wi, k(xi), for i=1,..., n. According to Eq. (21), one can write

Wi, k(xi)=C
x0 i

e−bh(x) D
iŒ ] i

[WiŒ, k − 1(xiŒ)]c − 1. (22)
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Starting from the boundary conditions k=0, such equation could deter-
mine in principle the partial partition function of any k-th generation
branch, until the thermodynamic limit limk Q . Wi, k(xi), necessary to obtain
bulk properties. In practice this is not possible, because such limit equals
infinity. Performing a normalization at each step, one can obtain a feasible
recursion relation in the following form

wi, k(xi)=g−1
i, k C

x0 i

e−bh(x) D
iŒ ] i

[wiŒ, k − 1(xiŒ)]c − 1, (23)

where wi, k(xi) denote normalized partial partition functions, and

gi, k — C
x

e−bh(x) D
iŒ ] i

[wiŒ, k − 1(xiŒ)]c − 1 (24)

is the normalization constant. Specializing Eq. (2) we can write

pi, k(xi)=z−1
i, k[wi, k(xi)]c, (25)

where

zi, k — C
xi

[wi, k(xi)]c. (26)

Finally, if the limit exists,

pi(xi)= lim
k Q .

pi, k(xi). (27)

Let us now show explicitly that the recursion relation Eq. (23), with
gi, k defined by Eq. (24), is equivalent to the NIM equations (18) and (19) in
the thermodynamic limit k Q ., still in the hypothesis that the limit
exists. (1) Substituting Eq. (25) into Eq. (23), and multiplying both sides by
[pi, k(xi)]1 − 1/c, we obtain

pi, k(xi)=q−1
i, k C

x0 i

e−bh(x)[pi, k(xi)]1 − 1/c D
iŒ ] i

[piŒ, k − 1(xiŒ)]1 − 1/c, (28)

where

qi, k — gi, k z1/c
i, k D

iŒ ] i
z1/c − 1

iŒ, k − 1. (29)

Using Eq. (25), the fact that ;x — ;xi
;x0 i

, Eq. (23), and Eq. (26), it is
possible to verify that Eq. (29) ensures normalization of pi, k(xi). As a con-
sequence, remembering Eq. (14), we see that, if the limit Eq. (27) exists, for
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k Q . Eq. (28) becomes equivalent to Eq. (18) ‘‘marginalized’’ to joint site
probability distributions (i.e., after a summation of both sides over x0 i),
which proves the equivalence with the variational method. Moreover it is
evident that

lim
k Q .

qi, k=q (30)

(independently of i), where q is defined by Eq. (19). The latter equation,
together with Eqs. (20) and (29), allows us to write

bf=− lim
k Q .

3 log gi, k+
1
c
5log zi, k − (c − 1) C

iŒ ] i
log ziŒ, k − 1

64 . (31)

Let us notice that, in the special case of a Cayley tree, Eq. (31) reduces to
the formula proposed by Gujrati (Eq. (3) in ref. 4) to evaluate the bulk free
energy density in the framework of the recursive approach. A minor dif-
ference consists in the presence of the term log gi, k, which disappears when
unnormalized partial partition functions are considered, but is essential to
numerical evaluation. The same bulk free energy density comes in a more
natural way from the variational approach.

3. TEST MODELS

In this section we investigate three test models, which we find very
significant and have been previously investigated by the recursive
approach. (5, 8) We perform variational calculations and compare the results
with those of the recursive approach. This is meant, on the one hand, to
clarify the discussion of the previous section about the case in which the
limit k Q . exists and, on the other hand, to give suggestions about what
happens when recursion relations have no fixed point.

3.1. Pure 4-Spin Ising Model

Let us consider first an Ising model with pure 4-spin interaction and
uniform magnetic field (5) on the square cactus. Main clusters are squares of
four sites, and each site is a joint site, characterized by a spin state variable
(s1, s2, s3, s4= ± 1). The main cluster hamiltonian is

h(s1, s2, s3, s4)=−Js1s2s3s4 − H
s1+s2+s3+s4

c
, (32)

where J > 0 is the 4-spin coupling constant and H is the magnetic field.
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The NIM equations (18) take the form

p(s1, s2, s3, s4)=q−1e−bh(s1, s2, s3, s4)[p1(s1) p2(s2) p3(s3) p4(s4)]1 − 1/c, (33)

where p(s1, s2, s3, s4) denotes the main cluster probability distribution, and
q is determined by normalization. In principle we can distinguish four dif-
ferent site distributions pi(si) and four different magnetizations

mi=OsiP=pi(+) − pi(−), (34)

for i=1, 2, 3, 4, but from the calculation we obtain only homogeneous
phases with magnetization mi — m independent of i.

As far as the recursive method is concerned, on the Ising square cactus
Eq. (23) reads

w1, k(s1)=g−1
1, k C

s2, s3, s4= ± 1
e−bh(s1, s2, s3, s4)[w2, k − 1(s2) w3, k − 1(s3) w4, k − 1(s4)]c − 1

(35)

for site 1, and similarly (by a circular permutation of subscripts) for sites
2, 3, 4. Eqs. (25) and (26) as a whole read, for s= ± 1,

pi, k(s)=
[wi, k(s)]c

[wi, k(+)]c+[wi, k(−)]c . (36)

In order to simplify the recursion relations, we can define the ratio

rk —
wi, k(+)
wi, k(−)

. (37)

Notice that it is independent of i, due to the fact that we assume homoge-
neous boundary conditions and the main cluster hamiltonian possesses a
dihedral symmetry. Using Eqs. (34), (36), and (37), we can compute the
magnetization as

m= lim
k Q .

rc
k − 1

rc
k+1

, (38)

where, due to Eq. (35), rk obey the equation

rk=a
a3dr3(c − 1)

k − 1 +3a2r2(c − 1)
k − 1 +3adr(c − 1)

k − 1 +1
a3r3(c − 1)

k − 1 +3a2dr2(c − 1)
k − 1 +3ar(c − 1)

k − 1 +d
, (39)
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with a — e2bH/c and d — e2bJ. Eq. (39) is solved recursively with the free
boundary condition r0=a, corresponding to a magnetic field equal to H
on all boundary sites.

In Fig. 2 we report the phase diagrams obtained by both methods for
H > 0 (field inversion H Q − H implies m Q − m). We set c=4 to
approximate the model on the ordinary square lattice. The phase diagrams
turn out to be qualitatively correct, unlike that obtained by the mean field
theory (see ref. 5 for a discussion). We obtain a first order transition line at
H ] 0, which separates a phase with lower magnetization from a phase
with higher magnetization. The line ends at a critical point. According to
the previous section, the equation of state is the same for both methods,
due to the fact that the recursion relation Eq. (39) has always a fixed point.
On the contrary the phase diagrams are only qualitatively equivalent but
quantitatively different. This is due to the fact that in the variational
approach a first order transition is determined by a crossover of the bulk
free energy densities of two different phases, i.e., two solutions of the NIM
equations obtained by different guess values. On the contrary, the standard
recursive method has a fixed starting point, corresponding to the boundary
conditions, and detects a first order transition as an abrupt change in the
attractor of the dynamical system defined by the recursion relation. The
transition observed in this way is the actual transition for the system on the
cactus tree with the given boundary conditions. As it could be expected,
when two competing phases degenerate into one (i.e., at the critical point)

0 1 2
0

1

2

3

k B
T 

/ J

H / J

Fig. 2. Phase diagram of the 4-spin Ising model on the square cactus (temperature vs. mag-
netic field). A dashed line denotes the first order transition, computed by the standard recur-
sive method with free boundary conditions. A circle denotes the critical point. A thick solid
line denotes the same transition evaluated by the variational method. A thin solid line repre-
sents the self-dual line.
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the two methods give the same result, which agrees with the analytic proof
that they are equivalent as far as the equation of state is concerned, when a
fixed point exists.

Let us notice that the Ising model with pure 4-spin interaction on the
ordinary square lattice is self-dual, (32) and phase transitions should occur (if
they do) along the line given by

sinh(2bJ) sinh(2bH)=1. (40)

We can observe that the transition line obtained by the variational
approach coincides (within numerical precision) with the self-dual line. This
is a nice evidence of the fact that the variational approach is suitable to
approximate ordinary lattice systems, even if it is not exact in predicting
the phase behavior of cactus trees. Nevertheless, when a fixed point of the
recursion relation always exists, like in this model, one can obtain good
results also by modifying the standard recursive approach with criteria that
have been mentioned in the introduction. In the previous section we have
shown analytically that Gujrati’s criterion (4) turns out to be equivalent to
the variational approach, because both rely on the minimization of the
bulk free energy density. Moreover ref. 28 shows that for this model the
transition line obtained by Monroe’s criterion coincides with the self-dual
line as well, and that equivalence to the variational method is found also
for the Potts model. We then have numerical evidence that also Monroe’s
criterion may be equivalent in general, still assuming that a fixed point
exists.

3.2. ‘‘Antiferromagnetic Triangle’’ Ising Model

The second test model we consider is the antiferromagnetic Ising
model with uniform magnetic field (8) on the triangle cactus (see Fig. 1).
Each site is a joint site, characterized by a spin state variable
(s1, s2, s3= ± 1), and the connectivity constant is c=3. The main cluster
hamiltonian reads

h(s1, s2, s3)=−J(s1s2+s2s3+s3s1) − H
s1+s2+s3

c
, (41)

where J < 0 is the antiferromagnetic coupling constant and H is the mag-
netic field.

The NIM equations are similar to Eq. (33)

p(s1, s2, s3)=q−1e−bh(s1, s2, s3)[p1(s1) p2(s2) p3(s3)]1 − 1/c, (42)
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(with obvious meaning of symbols), while magnetizations can be obtained
by Eq. (34) for i=1, 2, 3. From the calculation we obtain a homogeneous
phase and a symmetry-broken phase, where on every triangle we have (for
H > 0) two sites with equal positive magnetization and one site with nega-
tive magnetization. The situation is inverted for H < 0. The phase diagram
is displayed in Fig. 3 and is symmetric with respect to H=0. The transition
line is always first order. This model turns out to be interesting as an
approximation of the antiferromagnetic Ising model on the ordinary
triangular lattice, for which, due to frustration, ordinary mean field like
approximations, (24) included the cluster variation method, (25) fail in pre-
dicting the (qualitatively) correct phase diagram, and exhibit a phase tran-
sition at zero field.

As far as the recursive method is concerned, Eq. (23) reads

w1, k(s1)=g−1
1, k C

s2, s3= ± 1
e−bh(s1, s2, s3)[w2, k − 1(s2) w3, k − 1(s3)]c − 1 (43)

for site 1, and similarly (by a circular permutation of subscripts) for sites
2, 3. The procedure is analogous to the previous case, except that we pre-
serve the dependence on i, to be able to consider inhomogeneous boundary

0 1 2 3 4 5 6 7
0

1

2

+ ++ + –

k B
T 

/ |
 J

 |

H / | J |

Fig. 3. Phase transitions of the antiferromagnetic Ising model on the triangle cactus (tem-
perature vs. magnetic field). The symmetry-broken phase is denoted by ++−. A thick solid
line denotes the first order transition to the uniform phase, as predicted by the variational
method. A dashed line denotes the same transition obtained by the ‘‘sequential’’ recursive
method (see the text). Squares denote results from Monte Carlo simulations of the model on
the ordinary triangular lattice (the thin solid line is an eyeguide).
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conditions (if homogeneous boundary conditions are imposed the depen-
dence on i disappears because of the dihedral symmetry of the main cluster
hamiltonian). Being

ri, k —
wi, k(+)
wi, k(−)

, (44)

we obtain the following recursion relation

r1, k=a
a2d2rc − 1

2, k − 1rc − 1
3, k − 1+a(rc − 1

2, k − 1+rc − 1
3, k − 1)+1

a2rc − 1
2, k − 1rc − 1

3, k − 1+a(rc − 1
2, k − 1+rc − 1

3, k − 1)+d2 , (45)

for site 1, and similar ones for sites 2, 3 (circular permutation). Magnetiza-
tions are computed by

mi= lim
k Q .

rc
i, k − 1

rc
i, k+1

. (46)

The results of the recursive approach turns out to be dramatically
affected by boundary conditions for the present model. Let us work at
fixed temperature kBT/|J|=1 and vary the field H, considering the
following cases. For uniform free boundary condition r1, 0=r2, 0=r3, 0=a
(magnetic field equal to H on all boundary sites) we obtain the results
displayed in Fig. 4(a). The dependence on i is removed but, in a region
0 < H < Hc, the recursion relation has no fixed point and displays a limit
cycle of period 2. The magnetization of the central site oscillates between
two values shown in the figure, the positive value for even k and the nega-
tive one for odd k. In both cases triangles in consecutive generations alter-
natively display two sites with positive magnetization and one site with
negative magnetization, or vice-versa. On the contrary, for H=0 and
H \ Hc, a fixed point exists and a paramagnetic phase with uniform mag-
netization is obtained. The latter is equivalent to that predicted by the var-
iational approach. We also consider the case of inhomogeneous boundary
conditions r1, 0=r2, 0=a and r3, 0=a−2 (magnetic field equal to H on 2/3
of boundary sites and − H on the remaining ones). We obtain the results
displayed in Fig. 4(b). The behavior is equivalent to the previous one,
except in a subinterval of (0, Hc), where a fixed point exists, and the
dependence on i is preserved. More precisely we obtain the same symmetry-
broken phase predicted by the variational method, with the same numerical
values of magnetizations. This is in agreement with the discussion per-
formed in the previous section. We finally compare the above results with
those obtained by Monroe (8) by solving the recursion relation Eq. (45) in a
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-1

0

1
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m

-1

0

1

(a)

Fig. 4. Magnetizations of the antiferromagnetic Ising model on the triangle cactus at fixed
temperature kBT/|J|=1 as a function of the magnetic field. Results obtained by the recursive
method with: (a) free boundary conditions; (b) reversed field on 1/3 of boundary sites; (c) free
‘‘ragged’’ boundary conditions (‘‘sequential’’ method). Solid lines refer to fixed point magne-
tizations, dashed lines to limit cycles (period 2).

‘‘sequential’’ way. Even if this actually correspond to a different system (a
tree with a ‘‘ragged’’ surface), it turns out that a fixed point always exists,
and the behavior of magnetizations, displayed in Fig. 4(c), is quantitatively
equivalent to that predicted by the variational approach (except the posi-
tions of first order transitions).

After these results, we are led to suggest that, when recursion relations
have no fixed point, the bulk behavior of cactus systems may provide
unreliable information about the behavior of the corresponding ordinary
lattice system, and the recursive approach must be employed with some
caution. Actually in such cases one should expect a symmetry breaking in
the ordinary system, but it is not possible to solve the problem simply by
means of criteria for the location of transitions, as in the previous model.
One can at most perform some trick to obtain recursion relations with a
fixed point, such as Monroe’s sequential recursive procedure. Remarkably
the latter gives, with respect to the variational method, a transition line
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which is closer to the Monte Carlo result (33) for the ordinary triangular
lattice, but this seems to be a peculiarity of the model.

3.3. Pure 3-Spin Ising Model

The third test model we investigate is an Ising model with pure 3-spin
interaction and uniform magnetic field on the triangle cactus. This model
has been previously investigated by the recursive method, (5) with the aim of
approximating a model with 3-spin interaction on upward pointing (or
downward pointing) triangles of an ordinary triangular lattice. The main
cluster hamiltonian reads

h(s1, s2, s3)=−Js1s2s3 − H
s1+s2+s3

c
, (47)

where J > 0 is the triangle interaction, H is the magnetic field, and c=3 .
All calculations are analogous to the previous model. The recursion rela-
tion turns out to be

r1, k=a
a2drc − 1

2, k − 1rc − 1
3, k − 1+a(rc − 1

2, k − 1+rc − 1
3, k − 1)+d

a2rc − 1
2, k − 1rc − 1

3, k − 1+ad(rc − 1
2, k − 1+rc − 1

3, k − 1)+1
(48)

for site 1, and similar ones can be derived (by the usual circular permuta-
tion) for sites 2, 3.

We obtain the phase diagram shown in Fig. 5. For H > 0 only homo-
geneous phases are obtained, with a first order transition line, which sepa-
rates a lower magnetization phase from a higher magnetization phase, and
eventually ends at a critical point. In this region the phase behavior is
qualitatively similar to the square cactus model described previously. The
standard recursive method with free boundary conditions predicts, with
respect to the variational method, a different transition line but the same
critical point. The recursive method with Monroe’s criterion gives a transi-
tion line identical to the variational method. For H < 0 a symmetry-broken
phase appears. According to the variational method, each triangle has two
sites with equal negative magnetization and a site with positive magnetiza-
tion. This phase is separated from the paramagnetic phase by a first order
transition. In almost the same region of the phase diagram the recursive
method displays a complex behavior, involving limit cycles of high period
and chaos. (5) In Fig. 5 we report the boundaries of such region, drawn from
data published in ref. 5. In analogy with the previous model, we conjecture
that in this case the correct phase diagram of the ordinary lattice system is
predicted by the variational approach, while the anomalous behavior
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Fig. 5. Phase transitions of the 3-spin Ising model on the triangle cactus (temperature vs.
magnetic field). Thick solid lines denote first order transitions computed by the variational
method. A circle denotes the critical point. A thin solid line represents the self-dual line. A
thick dashed line denotes the first order transition between homogeneous phases obtained by
the standard recursive method with free boundary conditions. The symmetry-broken phase
region is denoted by +−−. Squares mark the boundary of the region in which the recursive
method displays limit cycles and chaos (the thin dashed line is an eyeguide).

observed in ref. 5 (and also ref. 10 for a similar model) is a peculiarity of
the cactus tree. Our conjecture is supported by the fact that, applying
Monroe’s sequential procedure, (8) we have obtained results that agree with
the variational approach.

4. CONVERGENCE OF THE VARIATIONAL METHOD

The last two examples suggest that, as far as the approximation of
ordinary lattice systems is concerned, the most relevant problems of the
recursive method occur when a fixed point does not exist. On the contrary,
the variational approach seems to overcome such problems. In this section
we try to give a more rigorous argument, showing a property of the NIM
equations (18). As previously mentioned, the NIM is a numerical iterative
procedure for the minimization of the variational free energy density. By a
generalization of Kikuchi’s proof for the Bethe lattice, (29) it turns out that
the free energy decreases at each iteration, and the algorithm is always
convergent. Let us first give the proof and then discuss some consequences.

Starting from Eq. (15), we write the difference between the free
energies of two consecutive steps of the iterative procedure as

b(f̂ − f )=C
x

[p̂(x)ĵ(x) − p(x) j(x)], (49)
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where a hat denotes the latter step, and accordingly

ĵ(x)=bh(x)+log p̂(x) − C
i

(1 − 1/c) log p̂i(xi), (50)

while j(x) is defined by Eq. (16). Taking the logarithm of both sides of
Eq. (18) (where the left hand side is now denoted by a hat), we can write
the NIM equations in two different ways, that are

log p̂(x)=−log q − bh(x)+C
i

(1 − 1/c) log pi(xi) (51)

and

C
i

(1 − 1/c) log pi(xi)=log q+bh(x)+log p̂(x). (52)

We substitute the former into ĵ(x), the latter into j(x), and finally both
into Eq. (49), yielding

b(f̂ − f )=C
x

p(x) log
p̂(x)
p(x)

+C
i

(1 − 1/c) C
xi

p̂i(xi) log
pi(xi)
p̂i(xi)

. (53)

We then consider the inequality log t [ t − 1, that holds for all real
numbers t (the equality holds only if t=1). By applying the inequality to
all logarithms in Eq. (53), taking into account that c > 1, and that proba-
bility distributions are normalized at each step, we can finally write

f̂ − f [ 0 (54)

f̂ − f=0 Z p̂(x)=p(x) -x. (55)

Eq. (54) means that the free energy can be decreasing or constant during
the procedure, while Eq. (55) assures that it is constant only if the proce-
dure has already reached convergence (i.e., the free energy can only
decrease during the procedure).

The above property, generally desirable for a numerical method that
aims to minimize a function, has some relevant consequences and makes a
significant difference between the NIM and the recursive method. Eqs. (54)
and (55) prevent the dynamical system defined by the NIM equations from
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having limit cycles. In this way the variational approach always determines
the best solution compatible with the invariance condition Eq. (11), and
this is the reason why it works for the examples given in the previous
section. As a drawback, we have to remark that the variational method
cannot detect whether the invariance hypothesis is too restrictive or not. In
the form presented here, it can describe correctly a symmetry breaking with
a period less than or equal to the width of a main cluster, but would not be
able to indicate the existence of phases with higher period (or even
incommensurate phases, as observed for instance in the ANNNI model (34)).
We then conclude that also the variational approach must be used with
some caution in the approximation of ordinary lattice systems, if there are
reasons to suspect that a violation of Eq. (11) occurs, not only in the cactus
system. (11) In such cases the recursive approach is important because, like in
the second example of the previous section, it gives information about the
nature of the symmetry breaking.

5. CONCLUSIONS

In this paper we have discussed several properties of the variational
approach to cactus trees, compared to the more usually employed recursive
approach. First of all we have put in evidence that the variational approach
is based on an exact factorization of the equilibrium probability distribu-
tion, and can in principle solve exactly finite cactus trees, as well as the
recursive method. Moreover we have considered different issues, concern-
ing the bulk behavior of infinite (self-similar) cactus trees and the approx-
imation of ordinary lattice systems (cactus approximation).

We have shown that the variational method allows a simple evaluation
of the bulk free energy density. The minimization of bulk free energy yields
the correct equation of state for the interior of an infinite cactus tree. In the
presence of multiple solutions, i.e., coexistence phenomena, first order
transitions determined by the variational method are not the exact ones for
the cactus tree, but turn out to be independent of boundary conditions, and
provide reliable approximations to phase transitions of a corresponding
ordinary system. On the contrary the standard recursive method determines
exact phase transitions for the infinite cactus tree, on the basis of changes
in the attractor of a dynamical system, defined by recursion relations. If the
dynamical system has fixed points, the method predicts the same equation
of state as the variational one, but the location of first order transitions
depends on boundary conditions, and usually provides poorer approxima-
tions to ordinary systems. We have then considered alternative criteria for
the determination of first order transitions, that have been proposed in the
literature to overcome this problem. We have shown analytically that
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Gujrati’s free energy criterion (4) is equivalent to the variational approach,
and we have obtained numerical evidence that also Monroe’s criterion,
based on recursion relation derivatives, (28) may be equivalent as well.

We have finally investigated what may happen if recursion relations
have no fixed points. On the basis of results obtained for test models, we
have suggested that in such case the recursive method may lead to incorrect
conclusions about the physics of the ordinary lattice model, if no other
information is available. In this case alternative criteria cannot be applied,
while the variational method seems to provide reliable results all the same.
We have given a rigorous explanation of such a nice behavior, by proving
that the convergence of the free energy minimization algorithm is
guaranteed by a general property.
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